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SUMMARY 

A second-order boundary element technique was developed to simulate the 3D hydrodynamic interactions 
between multiple particles of arbitrary shape. This paper reports the results of an extensive validation 
procedure aimed at demonstrating the convergence characteristics of the technique, especially in cases where 
the particles are in close proximity. The quadratic elements are superior to the lower-order elements in terms 
of accuracy, computer storage and CPU time required, thus resulting in a significant improvement in the 
overall cQmputationa1 efficiency. Superparametric discretization improves the accuracy over isoparametric 
discretization but lowers the convergence rate of the method. When the interparticle gap becomes very small 
(less than 1% of the particle radius), the numerical solution diverges owing to inaccurate determination of 
the element contributions in the gap region. An adaptive subdomain integration scheme was developed that 
dramatically improved the integration accuracy and provided convergent solutions for problems of very 
small gaps down to 0.01% of the particle diameter. 

KEY WORDS Boundary element method Local mesh refinement Convergence Small interparticle gap 
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INTRODUCTION 

Particle suspensions play an important role in a wide variety of natural and man-made processes, 
e.g. flow of blood particles and proteins, pipeline transport of slurries, paper making, processing 
of ceramics and polymeric or ceramic composite materials, etc. The predicition of the structure 
and rheological properties of suspensions is thus of both theoretical and practical interest. One of 
the critical issues is the determination of the many-body hydrodynamic interactions. This is 
particularly important in many suspensions, such as those encountered in the processing of 
composite materials, where highly non-spherical particles are used. As an example, in injection 
moulding of fibre-filled polymers, high fibre aspect ratios (as high as 1000) and high concentra- 
tions (as high as 60 wt%) are often used to obtain improved mechanical properties.'V2 

In view of the above-mentioned complexities, meaningful numerical simulations can only be 
developed based on three-dimensional hydrodynamic interactions around flexible fibres. How- 
ever, a direct three-dimensional (volume) discretization of the partial differential fluid mechanics 
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equations poses severe restrictions on the complexities of the problems that can be realistically 
handled without sacrificing the accuracy. An alternative approach is offered by the boundary 
element method (BEM), which has the advantage of reducing the dimensionality of the numerical 
problem by one, albeit at the expense of taking into account only the linear viscous forces. The 
assumption of a linear problem is justified by the fact that under typical processing conditions the 
particle Reynolds number is very small, of the order of and the inertia effect may be safely 
neglected. 

In solving a 3D physical problem using the BEM, only 2D surfaces need to be discretized in the 
numerical solution. In addition to lowering the computational requirements, the dimensionality 
reduction allows for an easier description of complex geometries resulting from surface deforma- 
tion. Finally, the BEM technique can be easily adapted to a parallel computer architecture, which 
has emerged as the computational framework of choice promising increases in capabilities orders 
of magnitude over the most powerful single-processor  supercomputer^.^ 

Although a considerable amount of work has been devoted to discussing the theoretical issues 
behind the application of the BEM?. relatively little attention has been paid to discussing the 
important numerical issues that arise in its implementation. In this first of a series of papers we 
present the development of a high-order BEM technique and a detailed investigation of its 
convergence characteristics. In the second paper a coupled BEM-finite element method tech- 
nique will be described to accommodate cases exhibiting non-linear flow behaviour. 

PREVIOUS WORK 

In the last decade there has been an increasing use of boundary element techniques to numerically 
study the hydrodynamics of suspensions. The relevant previous work is summarized below. 
Briefly, in the BEM the particle surface is discretized into elements and the variables of interest 
are approximated on the surface using piecewise continuous interpolation functions. Two basic 
mathematical formulations are employed leading to (a) Fredholm's integral equations of the first 
kind (FIE-1) and (b) Fredholm's integral equations of the second kind (FIE-2). 

The use of FIE-1 to solve the Stokes flow problem was pioneered by Youngren and A c ~ ~ v o s , ~  
who studied steady state flows past single arbitrary rigid prolate spheroids of aspect ratios 
ranging from 0.5 to 100. The steady state Stokes problem has been solved for multiparticle 
systems in various particle configurations by Tran-Cong and Phan-Thien'. * for aspect ratios up 
to 5. Ascoli et aL9 studied the sphere-wall interaction. More recently the dynamic Stokes problem 
of particle-particle interactions was studied by Boyington and Soane" and Ingber' ', l 2  for 
aspect ratios up to 10. Also, Stoos and Leal'3 studied the dynamics of a sphere moving towards 
an advancing flow front. 

The formulation of the Stokes problem using FIE-2 was originally proposed by 0 d q ~ i s t . l ~  
Until recently it did not gain popular use since the resulting system of integral equations depends 
on six linearly independent eigenfunction solutions, which in general are not known explicitly (see 
Reference 6 for a complete discussion). However, on the basis of the mathematical reformulation 
of Power and Miranda,15 Karrila et a l l 6  were able to study the steady flow past spheres using 
FIE-2 without recourse to the eigenfunctions. 

Either of the two formulations requires solving a set of linear integral equations. In the BEM, 
since after discretization of the variables the resulting matrices are fully populated, the storage 
and solution of such matrices deserve special attention. If a low-order interpolation function is 
used, the number of elements has to be increased for a given accuracy. The size ofthe matrices will 
be increased so much that if a direct matrix solution is sought, the size of the problem is 
significantly limited. Indeed, owing to the use of the low-order (constant or linear) interpolation 
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functions to approximate the particle geometry, the studies mentioned above were able to study 
only relatively low particle aspect ratios (up to 10). 

The formulation of the BEM using FIE-1 is straightforward since it directly involves physical 
variables such as the velocities and the tractions on the boundaries. However, the drawback is 
that the resulting system of equations is typically ill-conditioned, which makes the use of a direct 
matrix solver necessary. In contrast, FIE-2 results in a set of well-conditioned integral equations. 
Karrila et di6 showed that the conditioning number i s  kept low even upon mesh refinement and 
thus allows for an iterative solution of the matrices and reduces both the storage and com- 
putational time requirements. Power” showed that integral equations of the second kind yield a 
more stable solution. However, the major drawback for FIE-2 is that it involves not the physical 
variables but rather the density distributions, which might fluctuate widely for particles of irregular 
shapes.’* The physical variables need then to be determined in a postprocessing step. 

An important concern is that as the particle-particle or particle-wall gap becomes small, the 
accuracy of the integrals becomes poor to the point that the BEM solution does not converge on 
mesh refinement. Without suffering loss of convergence, the smallest gap that has been studied in 
the numerical simulation of hydrodynamic interactions of spheres was about 4% of the sphere 
diameter.g,’2 As a result, for cases of non-spherical particles or multiple spheres in close 
proximity, where no analytic solutions exist, there is no way to control the numerical error 
a priori. This can pose severe limitations in investigating the particle dynamics, especially in 
concentrated suspensions where the probability of particles being in very close proximity to each 
other is high. The difficulty of integral evaluation in problems of close proximity is also 
recognized in other fields, e.g. elastodynamic problems involving narrow  crack^.'^*^^ One 
approach there was to use an asymptotic expansion of the stress locally around the crack tip.” 
Very recently Voutsinas and Bergeles” and GeorgZ3 proposed an adaptive integration scheme 
similar to the one that we developed independently and report in this paper. 

Another important issue is the significance of the approximation of the surface geometry 
compared to that of the variables in the formulation. In the finite element method it is well known 
that an equal-order (isoparametric) approximation gives the best error/numerical effort ratio.24 
In the BEM, in which the variables are explicitly dependent on the surface geometry, it is expected 
that a higher-order surface geometry (superparametric) approximation might be beneficial. 
Indeed, Ingber‘ and Aliabadi and HallZ5 found that a superparametric discretization provided 
more accurate numerical results than the isoparametric discretization. In Ingber’s study he used a 
quadratic discretization of the geometry and a constant discretization of the variables. 

FORMULATION 

The Stokes flow over a domain SZ past an arbitrary particle with surface r is described by 

v . u = o ,  o=  -vp+pvzu,  (1) 

where u is the velocity vector, p is the pressure and p is the viscosity. Note that only the pressure 
and viscous terms are retained in the momentum equations. As shown in Figure 1, there are in 
general two boundary conditions, 

u = u  o n r , ,  q=q Q n r , ,  

where { q j }  = [aje. ( n k }  is the traction on the particle surface, CJ is the stress tensor and n is the 
outward normal. 
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Figure 1. Boundary conditions for BEM formulation 

The solution to the Stokes problem can be recast as the solution of a set of integral equations4 
r r 

where 

for a smooth boundary. 
- 1.0 if point ‘i’ is inside R 
-0.5 if point ‘i’ is on r 

0.0 if point ‘i’ is outside R 

The functions td;j and aTk1 are the fundamental solutions or free space green functions and 
satisfy the governing equation (1). For flow in an unbounded domain they are given by26 

4=+-)> 1 6rjrkrl  , 

(4) 

where r2 = r * r and r = x - 6.  Physically, u z  represents thejth component of velocity at point x due 
to a point force in the k-direction applied at [. Equation (3)  is written for each point of interest. 

The pressure in the fluid is given by26 

r r 

where 

After the velocities and tractions are determined as the primary variables of the formulation, the 
pressure can be obtained as a secondary variable in a postprocessing step. 
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NUMERICAL IMPLEMENTATION 

In the boundary element method the functions u and q are discretized and expressed as linear 
combinations of the interpolation functions Vk weighted by the nodal values: 

m m 

where (Pk is a piecewise continuous interpolation function and m depends on the order of the 
interpolation function and the type of element used (quadrilateral or triangular). In general the 
interpolation function can be of zeroth order (constant), first order (linear), second order 
(quadratic) or higher order. The higher-order functions will approximate the curvature of the 
variables better, thus improving the ac~uracy.’~ Similarly the domain geometry can be approxim- 
ated as 

where @k is also a piecewise continuous interpolation function. If rp and @ are of the same order, 
the discretization is said to be ‘isoparametric’. This has been found to give the optimal 
performance in the finite element method. However, for the BEM where the solution depends 
acutely on the approximation of the geometry, Aliabadi and HallZ5 have found that a super- 
parametric discretization in which @ is of a higher order than rp is more advantageous. 

In the collocation BEM the unknown nodal values are evaluated by solving a set of linear 
equations generated by writing equation (3) at each nodal point. At the ith nodal point, equation 
(3) in discretized form becomes 

where N is the total number of elements in the problem. Equation (9) can be rearranged in the 
form 

CHijI {u j }  = CGijI { q j ) ,  (10) 

where H and G are 3M x 3M influence matrices and u and q are the 3M velocity and traction 
vectors on the boundary. M is the total number of nodes. Note that H and G depend only on the 
particle geometry and not on the boundary conditions. 

For rigid particles the surface velocity is imposed as 

u = v + o x  (x-x,), (1 1) 

where x, is the particle centre of mass. Equation (11) evaluated at the nodal points results in the 
vector equation 

where V and w are the translational and rotational velocity respectively and (V, w )  is a combined 
velocity vector. A is a 3M x 6 N ,  matrix relating the particle velocities to the surface velocities, 
where N ,  is the number of particles. The total force and total torque acting on a particle, FJ and 
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T' respectively, are given by 

where I" is the surface of the Jth particle. 

Solution procedure 

There are in general two types of related problems. In the first type we are interested in 
evaluating the force and torque on the particles after specifying either the velocity or the traction. 
For problems of this type it is sufficient to first solve equation (10) alone and then evaluate the 
force and torque by a straightforward substitution of the velocities and tractions into equations 
(13) and (14). 

The second type of problems involves specifying known forces and torques on the particle; both 
the velocity and traction are unknown. By combining equations (lo), (ll),  (13) and (14), a new 
system of equations is obtained: 

where E is a 3M x 6 N ,  matrix equal to HA, with A defined in equation (12), D is a 6Np x 3M 
matrix which is a function of surface area and connectivity, (F, T) is a 6Np vector of force and 
torque components and (V, w )  is a 6 N ,  vector of translational and rotational velocity compon- 
ents. The combined matrix on the left-hand side is the new influence matrix for the problem. 
Solution of equation (1 5) yields the desired tractions and velocities. 

NUMERICAL ISSUES 

To fully realize the potential of the BEM, some critical issues on the implementation should be 
addressed since they limit the numerical efficiency and accuracy of the solution. These issues, 
although mentioned in the literature before, have not been addressed systematically. The 
objective of the work reported here is to develop a high-order BEM technique, convergent upon 
mesh refinement, that can accurately and efficiently handle three-dimensional flows around 
particles of arbitrary shape. 

First, a systematic study of the effects of the discretization of the boundary as compared to that 
of the variables (isoparametric versus superparametric) is lacking. Also missing is the evaluation 
of the approximation error involved in the integrals and its effect on the convergence character- 
istics. Except in some very recent work,''.'2 most of the previous work used lower-order 
interpolation functions. For example, Karrila et a l l 6  used 320 or more constant triangular 
elements to approximate the surface of a sphere. In our work a high-order (e.g. quadratic) 
interpolation function was used in conjunction with both isoparametric and superparametric 
discretization to efficiently approximate the arbitrary surface. The use of high-order interpolation 
functions offers the obvious advantage of higher accuracy, resulting in a minimization of the 
number of discrete variables, thus reducing the size of the matrices and permitting a direct matrix 
solution. However, no direct comparison has been reported. 



HYDRODYNAMIC INTERACTIONS BETWEEN PARTICLES 1069 

Secondly, the solution to the Stokes problem involves integrations of singular functions. 
If a constant interpolation function is used, the singular integrations can be performed 
analyti~ally.~~ 8 ,  " 7  However, for high-order interpolation functions and complex curved 
domains no analytical solution is available. Note that although the singular integrations are fewer 
in number than the non-singular integrations, the former usually affect the numerical accuracy 
more significantly. To calculate the singular integrals accurately, we used the methods of co- 
ordinate transformation and row In studying rigid body motion according to the row 
sum method, the sum of each row of the matrix H should add up to zero for unbounded flow and 
unity for bounded flow. 

Thirdly, while the BEM has received much attention in the last decade and has been 
successfully applied to a wide variety of problems, the effort in developing error estimates has 
been relatively scarce.28 -30 Analytical results on the convergence of the BEM are only available 
for 2D problems and cannot be extended to three-dimensional cases.29 Moreover, as the 
particle-particle or particle-wall gap becomes small, the accuracy becomes poor and often the 
solution does not converge. Without the loss of convergence the smallest gap that can be studied 
using FIE-1 was about 4% of the smallest characteristic dimension of the particles.' The issue is 
whether the poor convergence is caused by the above-mentioned ill-conditioning of the equa- 
tions. Since particles may come very close to each other or to a wall, it is important to develop a 
more robust technique such that the error is maintained below certain ceiling values. A hybrid 
BEM-FEM technique based on the lubrication approximation in the gap region appears very 
promising and will be described in a later paper.3' 

The fourth critical issue is related to the computational efficiency. Since the matrix of the 
discretized integral equations is fully populated and each of the components is obtained from a 
sum of integrals, it is imperative to evaluate the integrals and to solve the resulting full matrix of 
equations efficiently. The computer codes were written in double-precision Fortran on an 
IBM 3090 vector computer. Gauss quadrature was used for the evaluation of the integrals. For 
triangular elements, product formulae were used to generate the Gauss points.32 The matrix was 
solved directly using vector subroutines. An analysis showed that 90%-95% of the CPU time was 
spent on integrations, demonstrating the efficiency of the vectorized matrix solution routines.33 

RESULTS 

We developed the high-order BEM and benchmarked it with the low-order methods in terms of 
accuracy, convergence, efficiency, storage and limitations. The eventual intent is to study the 
dynamics of particles of various complex geometries, in which case the error at each time step 
accumulates over time. Hence it is important to minimize the error for a given discretization. 

The example problem of flow past rigid prolate spheroids in an unbounded domain was first 
considered in order to study the feasibility of the proposed BEM technique.34 Test cases for both 
one- and two-particle systems were examined so that' comparison with either analytic solu- 
t i o n ~ ~ ~ - ~ ~  or the results of similar numerical studies7 was possible. In discretizing the surface, 
triangular elements were used which allowed easy local mesh refinement at points where large 
gradients of stresses were anticipated. A typical mesh is shown in Figure 2. The particle aspect 
ratio ranged from 1 to 50. 

For flow past a sphere in an unbounded domain Stokes' law is applicable and the drag force F ,  
is given by 
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Figure 2. Typical mesh of a single prolate spheroid using triangular elements (six elements along major axis, four 
elements along minor axis; total 40 elements, 82 nodes) 

where V is the far-field velocity and a is the sphere radius. For flow past a particle of arbitrary 
shape or past many particles a correction to Stokes’ law is necessary: 

F ,  = 671p Va, R, (17) 

where a, is the radius of a sphere with the same volume as the particle and R is the dimensionless 
drag ratio describing the effect of particle shape and particle-particle interactions. Similarly a 
dimensionless rotational velocity is defined as 

wa o* =- 
V ’  

Case 1. Flow past a single particle 

First a detailed analysis of the effect of mesh refinement was performed using isoparametric 
discretization on flow past prolate spheroids.33 The geometry (surface of the prolate spheroids) 
was represented by curved triangles mapped from the local (ql , q 2 )  to the global (x, y, z )  space 
using the same interpolation functions (biquadratic) as those used for the representation of the 
 variable^.^ The convergence of the technique was studied using uniform mesh refinement in the 
case of a single prolate spheroid. As shown in Table I, the error in the drag ratio (and thus the 
translational velocity) decreased from 0.5% using the coarse mesh to less than 0.01 YO using the 
fine mesh. The case of flow past a single sphere was examined to demonstrate the numerical 
efliciency. As shown in Table 11, this technique using 128 quadratic elements produced results that 
are of the same accuracy (about 002% error) as that of Karrila et a1.I6 using 5120 constant 
elements. 

The advantage of the high-order methods is apparent from Table 111. For typical 3D problems 
using N ,  quadratic elements the number of unknowns is roughly 6 N z .  The number of integra- 
tions required is about 2(N,)2  and the resulting full matrix is of size (6N2)’. Similarly, for N o  
constant elements the number of unknowns is roughly 3N0;  the number of integrations required 
is about (No)’ and the resulting influence matrix is of size (3N0)’. Since for the same accuracy the 
value of N o  required is typically about 40Nz, the constant elements required 800 times more 
integrations and 400 times more computer storage. Since over 90% of the CPU time is spent on 
evaluating integrals, the CPU time advantage for the quadratic elements is obvious despite the 
fact that the constant element integrations are computationally slightly less intensive. (In this 
comparison it is assumed that a direct matrix solution is used and thus all components are 
stored.) Also, since fewer unknowns are required, the condition number for the quadratic 
elements was only moderately high, thus allowing a stable direct matrix solution. Similar 
arguments apply to comparison between the quadratic and linear elements. Therefore the 
quadratic elements are superior to the lower-order elements in terms of accuracy, computer 
storage, CPU time required, conditioning of the influence matrix and thus the overall com- 
putational efficiency. 
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Table I. Drag ratio for one-prolate-spheroid cases using isoparametric discretization (uniform 
mesh refinement) 

Aspect No. of quadratic 
ratio elements Drag ratio Error 

Flow Direction 2 24 1.08910 - 0.005 3 3 
60 1.09365 - 0.00078 

112 1.09433 -0.00010 
Exact 1.09433 

C C C  

C C C  

0 
Flow Direction 

2 24 0.95234 - 0.00322 
60 0.95536 - 0~0002 1 

112 0.95 5 66 0.00009 
Exact 0.95557 0 

Table 11. Drag ratio comparison for single-sphere case using isoparametric discretization: 
quadratic elements from this study versus linear elements from Reference 16 (uniform mesh 

refinement) 

Total no. of elements Drag ratio Error 

Flow Direction 8 quadratic 1.02838 0.02838 
32 quadratic 1.00262 0.00262 

128 quadratic l-Oo018 0.000 1 8 
Exact 1 -Oo000 

320 constant 0.98082 - 0.01 9 18 
1280 constant 099726 - 000274 

U &  

5120 constant 1N)O33 0.00033 

Table 111. Constant versus quadratic elements 

Constant element quadratic element 

No. of elements NO No. of elements N 2  

No. of integrations N o  x M O P  No. of integrations N2 x M2/3 
Matrix size M o  x M o  Matrix size M2 x M2 

No. of unknowns M o  = 3N0 No. of unknowns M, = 3(2N2 + 2) 

For similar accuracy using a large number of elements: 
1 

40 
N, = -No is required 

no. of integrations (constant) No x M, 8oo 
no. of integrations (quadratic) 

storage (constant) 
storage (quadratic) M, x M, 

- --= 
N, x M, 

M, x M, - 4oo =___- 
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Case 2. Flow past two particles-effect of local mesh refinement 

For two-particle systems the results from this work agreed very well with previous BEM results 
by Tran-Cong and Phan-Thien7 and asymptotic series results by Kim3' within the number of 
significant figures that can be extracted from their graphical representations (see Table IV). Also 
studied was the case of flow past two nearly touching spheres, which is considered to be a 
numerically formidable task. As shown in Table V, the results from our technique converged 
reliably with an order of convergence equal to 3.6 and an error less than 0.02% using a 
moderately fine mesh of 128 elements. In contrast, the results of Tran-Cong and Phan-Thien' did 
not show a consistent convergence trend. In this paper the convergence order is defined with 
respect to an average element length (equivalent to an average nodal spacing Ah). 

Table IV. Drag ratio for two-prolate-spheroid cases using isoparametric discretization 
~~ 

Particle 
Flow aspect 

Drag ratio Direction ratio d / a  No. of elements 

Z 2 4 24 quadratic 0.96548 
80 linear? 0.96 

80 linear7 0.87 
2 2 24 quadratic 0.86926 

'QdJ 
Y 2 3 24 quadratic 

60 quadratic 
80 linear' 

X 2 4 24 quadratic 
60 quadratic 
A ~ y m p t o t i c ~ ~  

5 4 24 quadratic 
Asymptotic33 

2 24 quadratic 
Asymptotic33 

't, 
00 l4- d* 

0.9 1799 
0.92106 
0.9 1 
0.77667 
0.77861 
0.779 
0.91637 
0.9 17 
0.80091 
0.800 

Table V. Drag ratio comparison for flow past two nearly touching spheres with gap 
equal to 4.53% of diameter: quadratic elements from this study versus linear elements 

from Reference 8 

No. of elements 
per square Drag ratio Error 

~ 

Flow Dliection 8 quadratic 0.70289 - 0.01482 
32 quadratic 0.7 1600 -0.00171 

128 quadratic 0.7 1759 - 0.00012 
+ + +  

Exact 0.71771 

80 constant 0.7224 0.0047 
128 constant 0.7241 09064 
192 constant 0.7214 0.0037 -d- 
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As shown in Table V, the relative error in the calculation of the rotational velocity was higher 
than for the translational velocity. Using a coarse mesh, the relative error or R was 2 1  YO and that 
on o* was 6.2%; using a fine mesh, the relative error on R was reduced to 0.02% and that on o* 
to 016%. 

Mesh refinement was used to improve the numerical efficiency. Since high stresses exist in the 
interparticle or particle-wall gap, elements in the gap region were locally refined. Based on the 
uniformly spaced 32-element mesh, locally refined meshes of 48, 64 and 80 elements were 
generated. As shown in Table VI, using the 48-element locally refined mesh yielded the same 
accuracy as the 128-element uniform mesh but required only one-seventh of the CPU time. The 
refinement in this case was implemented a priori because of the known structure of the solution to 
the problem, In principle it can be implemented adaptively through an evaluation of the local 
error, which can be approximated, for example, through an evaluation of the magnitude of 
variation of the variables within an element. This issue will be discussed again in Case 6. 

Case 3. Superparametric BEM 

Superparametric discretization was investigated as a means to improve the numerical accuracy. 
For particles of arbitrary shape superparametric discretization can be achieved by using a higher- 
order approximation to represent the geometry than to represent the velocity and traction 
variables. As an example a non-singular integration in an element was evaluated using various 
combinations of geometry and velocity approximations. For this test the geometry was taken to 
be one-eighth of a sphere (see the diagram in Table VII). The reported exact values were mesh- 
convergent results. As shown in Table VII, when the velocity was approximated quadratically, a 
third-order geometric approximation significantly improved the value of the integral over a 
second-order one. Using a fourth-order geometric discretization further improves the value. An 
asymptotic value was obtained when an exact representation of the geometry was used. 

Table VI. Velocities for flow past two nearly touching spheres with gap equal to 4.53% of diameter 
using local mesh refinement. The eight-, 32- and 128-element meshes are uniformly refined whereas the 

48-, 64- and 80-element meshes are locally refined based on the 32-element mesh 
~ 

No. of 
quadratic Rational 

Discretization elements Drag ratio Error velocity Error 

Superparametric 

Isoparametric 8 
32 

128 
48 
64 
80 

8 
32 

128 
48 
64 
80 

Exact 

0.70289 
0.7 1600 
0.71759 
0.7 1658 
0.71660 
0.71660 

0.71747 
0.71760 
0.71769 
0.71768 
0.71770 
0.71770 
0.7 177 1 

- 0.0 148 2 
- 0.0017 1 
-0.00012 
-0.00013 
-0~o0011 
-000011 

- 0.00024 
-0~Ooo11 
- 0 ~ m 2  
- OmOO3 
-0~MWw)l 
- 0~00001 

0.10412 
0.10023 
0.09822 
0.09786 
0.09765 
0.09764 

0.10383 
0 1 W 3  
0.09819 
0.09 8 22 
0.098 13 
0.098 13 
0.09806 

0.00606 
0.002 1 7 
0~00016 

- 0.00020 
-0~00041 
- 0~00042 

0.00577 
0.00 197 
0.00013 
0.00016 
O.ooOo7 
040007 
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Table VII. Double-layer velocity components at point i due to motion of the shaded element for the problem in which gap 
is equal to 4.53% of diameter 

Order of Order of 
velocity geometric 

discretization discretization uI u2 u3 Comment 

2 1 2.571066 0.75531 1 0.484366 Subparametric 
2 3.769483 1.496275 0.319466 Isoparametric 
3 3.822645 1.518831 0.301669 Superparametric 
4 3.818758 1517433 030271 5 Superparametric 

Exact 3,8177 12 1.5 18 134 0.304701 Superparametric 

Exact Exact 3.807015 1.513877 0.304556 

contribution of the shaded element 
(1/8 of the sphere) on the node 

n 2o -I 

-1 0 1 
a b C 

arc length 

Figure 3(a). Z-component of traction,along points ‘a’, ‘b’ and ‘c’ on plane parallel to flow direction using isoparametric 
discretization (gap equal to 4.53% of sphere diameter) 

In the following test cases, in which only spheres were studied, superparametric discretization 
was implemented by using an exact representation of the geometry in terms of the spherical co- 
ordinates and a quadratic approximation of the velocity and traction variables. Each element was 
taken to be a spherical triangle, each edge of which is part of a great circle on the sphere’s surface. 
The integration variables were the two solid angles, thus yielding a quadrilateral integration 
domain. As shown in Table VI, using 32 superparametric elements yielded the same accuracy on 
the drag ratio as using 128 isoparametric elements and required only one-fourth of the CPU time. 
However, the improvement was less dramatic with respect to the rotational velocity o*. 

As shown in Figure 3, the high-order BEM technique provides very accurate simulation of the 
tractions, which will be needed to determine local solid deformation of deformable particles. The 
exact traction was based on the series expansion expression of the velocity profile by Goldman 
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Figure 3(b). 2-component of traction along points ‘a’, ‘band ‘c’ on plane parallel to flow direction using superparametric 
discretization (gap equal to 4.53% of sphere diameter) 
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Figure qa). Error on drag ratio (R) for flow past two spheres using isoparametric and superparametric elements 

et aL3’ Note that the traction determined from the 32-element mesh matched the exact profile 
except in the gap region around the point of closest contact. Better accuracy in that region was 
achieved upon mesh refinement. 

Case 4. Convergence acceleration 

In Figure 4 the convergence rate with mesh refinement corresponding to the two discretization 
schemes is compared for the problem of flow past two spheres in which the centre-to-centre 
distance varies up to 27-308 diameters. The isoparametric elements showed a consistent conver- 
gence order of 3.6 for both R and w*, independent of the gap size provided that the gap width was 
larger than about 1 %. On the other hand, superparametric elements showed a convergence order 
of 1-6 for w*, although the error obtained for a given discretization was consistently smaller than 
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Figufk 4(b) Error on rotational velocity (o*) for flow past two spheres using isoparametric and superparametric elements 

that of the isoparametric elements. We interpreted the higher convergence order in the isopara- 
metric case as a result of the greater sensitivity to the error in approximating the geometry. While 
we did not carry out further mesh refinement, it is intuitive that as we refine the mesh further, the 
error due to the geometric representation from the isoparametric discretization will decrease and 
asymptotically approach that from the superparametric discretization. Therefore we speculate 
that if the mesh refinement process is extended beyond the current range, the convergence order 
from the isoparametric discretization will decrease and asymptotically approach that from the 
superparametric discretization and that the error in the solution from the isoparametric discretiz- 
ation will always be higher than that from the superparametric discretization. 

The power and benefits of a convergent numerical method are that the accuracy of the 
numerical result can be improved using standard convergence acceleration techniques such as the 
Shanks, tran~formation.~' For the case of flow past prolate spheroid of aspect ratio 50, the 
uniformly refined meshes yielded errors on R of 1-0%, 0.36% and 027% respectively. The Shanks 
transformation (without additional computation) based on these three results reduced the error 
to 0.09% (see Table VIII). Thus, instead of using a finer mesh which demands much higher CPU 
time and computer storage, using the convergence acceleration technique yields a substantially 
more accurate solution. 

Case 5. Cause of divergence in solutions to close proximity situations 

As shown in Figure 4, the convergence of the high-order BEM technique became worse as the 
particle gap decreased to below 1% of the particle diameter, irrespective of the discretization 
used. In some cases the solution diverged upon mesh refinement. The poor accuracy was 
particularly evident for the traction in the gap region, which was poorly determined and in some 
cases even with the wrong sign. We undertook a rigorous and systematic study of the causes for 
this divergence in which we investigated the errors associated with specific steps in the BEM 
procedure. The results of this study are briefly outlined below. 

(a) The singular integration was separately performed using n x n Gauss points, where n is in 
the range 620 .  Note that in using the spherical co-ordinate system to describe the surface 
of spheres exactly, the two solid angles become the integration variables. The singularities 
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Table VIII. Convergence acceleration using the Shanks transformation (uniform mesh refinement). 
For the mesh the first number is the number of elements along the major axis and the second number 

is the number of elements along the minor axis 

Aspect Total no. of 
ratio ellipsoids Mesh used Drag ratio Error 

Flow Direction 2 1 4 x 4  

2 

50 1 

5 x 5  
6 x 6  
Shanks 
Exact 
4 x 4  
5 x 5  
6 x 6  
Shanks 
10 x 10 

1 2 x 4  
1 5 x 5  
1 8 x 6  
Shanks 
Exact 

1 5 x 5  
1 8 x 6  
Shanks 

2 4 x 4  

095234 
0.95473 
0.95536 
0-95558 
0.95557 
0.72139 
0.72286 
0.72326 
0.72341 
0.72342 

2.181 
2.21 1 
2.197 
2.20 1 
2.203 
1.504 
1.518 
151 1 
1.513 

-0.00324 
-0.00085 
- 0.99922 

O-ooOOl 

- 0.022 
0.008 

- 0.006 
- 0.002 

due to u$ and C$k are cancelled and there is no need for special integration. It was found 
that the value of jr u$qj dT, converged to within of the exact solution using only 
6 x 6 Gauss points. The integral fr C$k ujn, dr,, normally conceived as singular, was found 
to behave as weakly singular and converged to within lo-' of the exact solution using 
10 x 10 Gauss points. Hence the row sum method was not needed to determine the 
diagonal components of the matrix H. It will be used as a check on the accuracy with 
which the integral contributions are evaluated (see below). 

(b) To determine the influence of error accumulation in the solution of the linear equations, the 
condition number of the resulting matrix was monitored as a function of the discretization. 
The condition number was calculated as 11 G 11 x 11 G- ' 11 co, the infinite norm of the matrix 
and its inverse.34 As shown in Figure 5, the condition number increased with the number of 
elements to the power of approximately 2.5 for gaps larger than 1% of the sphere diameter. 
Below that the condition number increased erratically. Although the largest condition 
number encountered was of the order of lo9, it did not affect the solution accuracy directly. 
The reason for this unexpected behaviour is explained below. 

(c) The matrix is normally stored and solved in double precision using the highly efficient, 
vectorized double-precision ESSL subroutines (DGEF and DGES) in an IBM 3090 
environment. In order to ascertain the effect of the high condition number on the accuracy 
of the solution, a Gaussian elimination subroutine in quadruple precision was used. In all 
cases tested it was found that the quadruple- and double-precision results agree with each 
other within 10- lo despite the high condition number. 

(d) The non-singular integration was evaluated using n x n Gauss points, where n = &20. It 
was found that while the value of most integrals converged using as few as 4 x 4 Gauss 
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Figure 5. Condition number of influence matrix 

Figure 6. Contribution of element in gap region to collocation point on neighbouring sphere 

points, there existed a few integrals for which the values did not show any trend of 
convergence. Specifically these were integrals which involve elements in the gap (see 
Figure 6). Moreover, the values of these integrals were at least an order of magnitude larger 
than the rest of the integrals. Even a slight error in their determination had a magnified 
effect on the diagonal components of the matrix H as obtained using the row sum method. 

Hence it was concluded that as the interparticle gap decreased, the error accumulation resulted 
from the inaccuracy in determining the disproportionately large, nearly singular contributions to 
the influence matrix from the elements in the gap region.31 

Case 6.  Adaptive subdomain integration 

An adaptive subinterval integration was developed to improve the integration accuracy. The 
domain was subdivided into subdomains, with the length of the subdomain halved during each 
subdivision (see Figure 7). The process of subdivision was continued until the sum of the 
subdomains agreed with the parent domain within a convergence criterion (typically lo-'' of the 
normalized sum of the components in a row). Similar ideas on domain subdivision have been 
proposed and demonstrated by Voutsinas and Bergeles22 and G e ~ r g . ' ~  

With the inaccuracies in the integration procedure removed, all components of matrices H and 
G can be obtained accurately through a direct evaluation of the integrals without recourse to 
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1-into-3 subdivision 1-into-4 subdivision 

L for isopararnetric element ~~ for superparametric element 

Figure 7. Adaptive sub-domain integration 

using the row sum method. This allowed us to use the row sum as an independent check on the 
accuracy of the integrations. From our experience, for the isoparametric elements which have a 
triangular integration domain, triangular subdivision proves to be the most efficient and 
straightforward. For the superparametric elements which have a quadrilateral integration 
domain, a one- into-three subdivision scheme is more efficient than a one-into-four scheme (see 
Figure 7). For the elements outside the gap, usually no subdivision is required. For the elements in 
the gap, seven to 11 levels of subdivisions were required for gaps smaller than 1 YO of the particle 
diameter. 

As shown in Table IX, the range of convergence was extended to very small particle diameters 
less than 001% of the sphere diameter. Note that in the case of a 0.01% gap the side of the 
smallest element in the 80-element mesh is 980 times larger than that of the gap width. While very 
small gaps are not likely in the cases of spheres owing to the development of large hydrodynamic 
lubrication forces, it is possible for small gaps to develop locally along fibres. 

A few additional notes should be made. 

The condition number was influenced mostly by the size of the problem. This shows the 
advantage of using a higher-order approximation and local adaptive mesh refinement 
geared towards reducing the number of elements required for a given accuracy. There was 
only a minor effect of particle gap size on the condition number. Overall the condition 
number increased with the number of elements to the power of 2.5, which is consistent with 
the observation in Case 5 above. 

In the absence of sub-domain integration the condition number was higher for the same 
size of problem owing to errors in the matrix components (compare Figure 5 with Figure 8). 
As an example, in using the 80-superparametric-element mesh to solve the problem of flow 
past two spheres in which the gap was 0*245%, the condition number was 1.8 x lo8 using 
sub-domain integration and 2.9 x 10” if subdomain integration was not used. 
A Gaussian elimination subroutine in quadruple precision was used to check the error in 
solving the matrix resulting from using subdomain integration. In two cases tested (the 
216- and 256-element meshes) it was again found that the quadruple- and double-precision 
results agree with each other within lo-’’ despite the moderately high condition numbers 
(1-1 x lo9 and 4.6 x lo9). 
For locally refined meshes the results showed a trend of monotonic convergence up to the 
64-element mesh. Further local refinement to the SO-element mesh yielded errors with the 
opposite sign. Indeed, the 96-element mesh yielded worse results than the SO-element mesh. 
We further checked the effectiveness of local refinement by using two additional meshes: the 
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Table IX. Results for flow past two nearly touching spheres using superparametric elements 
(see Figure 3(a) for location of point 'd') 

Number of 
quadratic Condition Rotational Traction 

Gap/diameter elements number Drag ratio velocity at point 'd' 

0.00245 

0.0005 

O~OOO 1 

0.0100 8 
32 

128 
48 
64 
80 

Exact 

8 
32 

128 
48 
64 
80 

Exact 

8 
32 
48 
64 
80 

Exact 
8 

32 
128 
48 
64 
80 
96 

216* 
2-56? 

Exact 

8.0 x 105 
3.6 x 107 

3.5 x 107 
5.0 x 107 
1.8 x lo8 

9.4 x 105 
3.6 x 107 
4.1 x 107 
8.2 x 107 
5.6 x lo9 

9.2 x 105 
3.7 x 107 
3.7 x 109 
5.3 x 107 

1.0 x 109 

1.1 x 109 
4.6 x 109 

1.4 x lo8 

8.7 x 10" 

0.71044 
0.71 107 

0.71225 
0.7 1262 
0.71264 
0.7 1264 

0.70891 
0.70977 

0.71153 
0.71271 
0.71296 
0.71291 

0.70857 
0.70943 
0.71142 
0.71325 
0.71472 
0.7 14 14 

0.70823 
0.70952 
0.71139 
0.71 142 
0.71340 
0.7 1606 
0.72422 
0.71593 
0.71579 
0.7 15 33 

0.10807 
0.09806 

0.09046 
0.08815 
0.08804 
0.08793 

0- 1085 1 
0.09706 

0.08582 
0.07844 
0.07687 
0.077 17 

0.108 55 
0.09684 
0.0841 5 
0.07267 
0.06337 
0.06708 
0.10885 
0.09582 
0.08375 
0.08369 
0.07116 
005437 
0.02768 
0.05 5 3 3 
0.05614 
0.05908 

12.977 
16.348 

15.488 
15.265 
15.258 
14.995 

12.906 
16.670 

15.543 
14.958 
14.839 
14.580 

13.068 
16.844 
15.553 
14.714 
14.121 
14.035 

14.237 
16.632 
15.625 
15.553 
14.646 
13-615 
10.532 
13.439 
13.484 
13.943 

* Non-uniformly refined from the 64-element mesh. 
t Uniformly refined from the 64-element mesh. 

21 6-element mesh refined from the 64-element mesh was a non-uniformly refined mesh but 
the area of refinement covered a larger surface than the 80-element mesh; the 256-element 
mesh was a uniformly refined mesh. In terms of accuracy the 256-element mesh performed 
the best and the 216-element mesh performed better than the 80-element mesh. Hence there 
is a limit on the number of levels to which local mesh refinement can be carried out (see 
Table IX). In the light of these results the mesh refinement used in Case 2 was unnecessary 
and the major effect of mesh refinement was to locally reduce the quadrature error. 

(d) Finally, with all the techniques developed in this work (superparametric discretization and 
subdomain integration) and upon a uniform mesh refinement (over triangular elements 
with quadratic approximation of the variables) the convergence rate was found to be 
quadratic with element length in calculation of both the translational and rotational 
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Figure 8. Condition number of influence matrix using superparametric elements and subdomain integration 
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Figure 9(a). Error on drag ratio ( R )  for flow past two spheres usingsuperparametric elements and subdomain integration 

velocities. In previous work which did not employ subdomain the rota- 
tional velocity had poorer convergence than the translational velocity (for example, 
compare results for superparametric elements in Figures 4(a) and 4(b) with Figures 9(a) 
and 9(b). Note that results from the eight-element mesh were not used in determining the 
convergence order since the mesh is too coarse. 

The local traction in general shows a linear convergence with respect to the element 
length (see Figure lo), which is in agreement with the quadratic convergence of the integral 
quantities (translational and rotational velocities). The convergence order decreases as the 
gap size decreases and as the closest point of contact is approached. Note that the local 
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Figure 10. Error on traction at point 'd' of Figure 3(a) for flow past two spheres using superparametric elements and 
subdomain integration 

traction has seldom been reported in previous work. It is the first time that robust 
convergence on local variables has been demonstrated. 

(e) Subdomain integration provides naturally a means for mesh refinement. As the domain is 
subdivided, the sum of the contributions from the subdomains is checked against that from 
the parent domain. If excessive subdivisions are required, indicating large variations in one 
or more of the variables, mesh refinement is recommended. 

As mentioned before, theoretical results for convergence of the 3D collocation BEM are not 
available. Only results for the Galerkin and collocation BEM in 2D have been reported.28 This 
seems to indicate that more work is necessary to address this important issue. 
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Case 7. Two opposing spheroids 

To demonstrate the powerfulness of the adaptive subdomain integration scheme, the case of 
unbounded flow past two oblate spheroids (aspect ratio of 10) was studied. Oblate spheroids are 
used often to approximate discs. For the case of flow past a single oblate spheroid the results 
converged at an order of 5-1 (Table X). For the case of two oblate spheroids, opposing unit forces 
were imposed to push them towards each other. This problem is challenging since much of the 
surface is almost flat, which provides a large number of elements in close proximity to each other 
for cases of small gaps. Since there is no theoretical values for the drag ratio, we compare our 
far-field (large-gap) results with those of Yoon and Kim4' and our near-field (small-gap) results 
with the asymptotic values of 

As shown in Table XI, our results for moderate gap sizes agree very well with the asymptotic 
values. In the range over which the asymptotic results are valid the typical errors are less than 
1%, which is considerably better than those obtained by Yoon and Kim.41 For small gaps 
a Shanks transformation was performed using the individual drag ratios determined from three 
meshes. The results were higher than the asymptotic value since it is well known that the small- 
gap asymptotic expansion result is valid over an extremely small range. Nevertheless, the trend of 
decreasing velocities (as indicated by increasing drag ratio values) as the gap narrows is captured 
very well. Also, the ratio of the Shanks-transformed results and the asymptotic values appears to 
decrease as the gap narrows. 

DISCUSSION 

The major contribution of this work is to show that the conventional boundary element 
technique (i.e. utilizing integral equations of the first kind) can be used to obtain accurate results 
that are mesh-convergent in Stokes flow problems. The numerical issues that need to be efficiently 
resolved to achieve accurate results involve higher-order interpolation functions, a superpara- 
metric evaluation of surfaces, adaptive mesh refinement and, most importantly, control of 
quadrature errors through successive subdomain integration. The second contribution is to 
demonstrate convergence not only for global quantities (such as the drag ratio) but also for local 
ones, in particular the traction, which can exhibit wide variations in regions where two surfaces 
are very close to each other. 

It is rather difficult to explain the different convergence rates observed in this work mainly 
because of the absence of any mathematical theory for 3D problems. We can, however, speculate 
on some of the factors that influence the solution accuracy. Due to the high condition numbers, 
the errors in the solution might simply reflect the quadrature error in evaluating the integrals 
which constitute the components of the matrics G and H. In the superparametric cases, although 

Table X. Drag ratio for one-oblate-spheroid case using isoparametric discretization with 
subdomain integration (uniform mesh refinement) 

No. of 
Aspect quadratic 
ratio elements Drag ratio Error 

Flow Direction 10 24 0.81734 -00351 1 
60 0.84410 - 0.00835 

112 0.85146 - 0~00099 
Exact 0.85245 

+ 4 +  
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Table XI. Drag ratio for case of opposing unit force in x-direction acting on 
two oblate spheroids (aspect ratio c/a = 10) using isoparametric discretization 

with subdomain integration 

(d - 2c)/a No. of elements Drag ratio 

4 24 quadratic 2.4624 3 60 auadratic 2.5430 
As~&ptotic*~ 
YK42 

3 24 quadratic 
60 quadratic 
Asymptotic42 
YK42 

2 24 quadratic 
60 quadratic 
Asymptotic42 
YK4’ 

0.8 24 quadratic 
60 quadratic 
YK42 

0.3 24 quadratic 
60 quadratic 
YK42 

0.05 24 quadratic 
60 quadratic 
112 quadratic 
Shanks 
Asymptotic*’ 

0.025 24 quadratic 
60 quadratic 
112 quadratic 
180 quadratic 
Shanks 
Asymptotic*’ 

4, 
+ICW 

2.5722 
2.63 
2.7545 
2.8433 
2.8795 
3.03 
3.4189 
3.5242 
3.5968 
4.67 
7.7900 
7.99 17 

21.6 
32.662 
34407 
57.6 

189.68 
533.33 
745.54 

1088 
2160 

113.82 
740-14 

1521.6 
2020-4 
2901 
4317 

we have used an adaptive subdomain integration in order to keep the quadrature error always 
below the same bound, it is not clear if we have completely eliminated the influence of quadrature 
errors on the final solution. Furthermore, as the gap narrows, the traction function becomes so 
steep that we do not think that we have reached the asymptotic region on the convergence plot. 
Hence a hybrid approach may be appropriate for such cases. Finally, in the study of the flow 
around a single sphere or spheroid the very good convergence rates might be due to the 
exceptionally well-behaved solution for that problem.43 

CONCLUSIONS 

In this paper a detailed convergence investigation of a quadratic BEM technique applied to 3D 
test flow problems was presented. The high-order technique, when implemented in an efficient 
and accurate fashion, yields mesh-convergent results even for problems of close proximity. Here, 
in the problems examined-flow past two almost touching spheres (with gap widths of the order 
of 0.1% of the sphere diameter)-64 elements per sphere was found to be adequate to yield errors 
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below 0.2%. The quadratic elements were found to be superior to the lower-order elements in 
terms of accuracy, computer storage, CPU time required, conditioning of the influence matrix 
and thus overall computational efficiency. The techniques of superparametric discretization and 
local mesh refinement were shown to improve the numerical efficiency dramatically. The poor 
convergence in cases of small particle gaps was caused by inaccurate determination of the 
disproportionately large contribution from elements in the gap region. An adaptive subdomain 
integration scheme was developed to improve the integration accuracy. The range of convergence 
in the test cases was extended to very small particle gaps down to 001% of the particle diameter. 
It was demonstrated that a convergent solution can be obtained using integral equations of the 
first kind despite a moderately high condition number. Clearly the same subdomain integration 
technique can be applied in the study of other fields, e.g. elastodynamics. 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge financial support of their research from the Center for 
Composite Materials at the University of Delaware and computational support from the 
Academic Computing Service at UD. They would also like to acknowledge stimulating discus- 
sion with Dr. Wendland who pointed out the significance of errors associated with integral 
contributions from elements in the gap. 

REFERENCES 

1. J. M. Crosby and T. R. Drye, ‘Fracture studies of discontinuous fiber reinforced thermoplastic composites’, J .  Rein5 
Plast. Compos., 6, 162-177 (1987). 

2. S. Ward and J. Crosby, ‘The influence of microstructure on the mechanical property performance of long fiber 
reinforced thermoplastic composites’, AN TEC’89 Proceedings Conference, SPE, New York, 1989, pp. 1508-1512. 

3. N. P. Smith (ed.), ‘News and analysis’, Supercomputing Review, 4 (12), 12-22 (1991). 
4. C. A. Brebbia and J. Dominguez, Boundary Elements: An Introductory Course, McGraw-Hill, New York, 1988. 
5. S. Kim and S .  I. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth/Hehemann, Boston, 

6. G. K. Youngren and A. Acrivos, ‘Stokes flow past a particle of arbitrary shape: a numercial method of solution’, 

7. T. Tran-Cong and N. Phan-Thien, ‘Stokes problems of multiparticle systems : a numercial method for arbitrary flows’, 

8. T. Tran-Cong, N. Phan-Thien and A. L. Graham, ‘Stokes problems of multiparticle systems: periodic arrays’, Phys. 

9. E. P. Ascoli, D. S. Dandy and L. G. Leal, ‘Low Reynolds number hydrodynamic interaction of a solid particle with a 

10. D. R. Boyington and D. S. Soane, ‘Dynamic simulation of suspensions of non-spherical particles by boundary element 

11. M. S. Ingber, ‘Numerical simulation of the hydrodynamic interaction between a sedimenting particle and a neutrally 

12. M. S. Ingber, ‘Dynamic simulation of the hydrodynamic interaction among immersed particles in Stokes flow’, Int. j. 

13. J. A. Stoos and L. G. Leal, ‘Particle motion in axisymmetric stagnation flow toward an interface’, AIChE J., 35, 

14. F. K. G. Odqvist, ‘On the boundary value problems in hydrodynamics of viscous fluids’, Math. Z., 32,327-375 (1930). 
15. H. Power and G. Miranda, ‘Second kind integral equation formulation of Stokes flow past a particle of arbitrary 

shape’, J .  Appl. Math., 47, 689-698 (1987). 
16. S. J. Karrila, Y. 0. Fuentes and S .  Kim, ‘Parallel computational strategies for hydrodynamic interactions between 

rigid particles of arbitrary shape in a viscous fluid’, J .  Rheol., 33, 913-947 (1989). 
17. H. Power, ‘Numerical methods for solving the low Reynolds number flow past a particle of arbitrary shape: a 

comparison work’, in S. Grilli, C. A. Brabbia and A. H.-D. Cheng (eds), Proc. Fifth Int. Con5 on Boundary Element 
Technology, Springer New York 1990, pp. 253-262. 

18. S. J. Karrila and S. Kim, ‘Integral equation of the second kind for Stokes flow: direct solution for physical variables 
and removal of inherent accuracy limitation’, Chem. Eng. Commun., 82, 123-161 (1989). 

19. T. A. Cruse, ‘Fracture mechanics’, in Boundary Element Methods in Mechanics, P. E. Beskos (ed.), V. 3 in 
Computational Methods in Mechanics, North-Holland, Amsterdam, 1987, pp. 333-365. 

1991. 

J. Fluid Mech., 69, 377403 (1975). 

Phys., Fluids A, 1, 453461 (1989). 

Fluids A, 2, 666-673 (1990). 

planar wall’, Int. j. numer. methods fluids, 9, 651488 (1989). 

technique’, Int. Polym. Proc., 4, 3543  (1989). 

buoyant particle’, Int. j .  numer. methods fluids, 9, 263-273 (1989). 

numer. methods fluids, 10, 791-809 (1990). 

196212 (1989). 



1086 C. Y. CHAN, A. N. BERIS AND S. G. ADVA’NI 

20. M. Bonnet and H. D. Bui, ‘Regular B.I.E. for 3-D cracks in elastodynamics’, in: Advanced Boundary Element Methods, 

21. V .  A. Kozlov, V. G. Maz’ya and V. Z. Parton, ‘Asymptotic form of the stress intensity coefficients in quasistatic 

22. S. Voutsinas and G. Bergeles, ‘Numerical calculation of singular integrals appearing in three-dimensional potential 

23. K. Georg, ‘Approximation of integrals for boundary element methods’, SIAM J. Sci. Stat. Comput., 12, 444453 

24. K.-I. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ, 

25. M. H. Aliabadi and W. S. Hall, ‘Nonisoparametric formulations for the three-dimensional boundary element method‘, 

26. 0. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 
1963. 

27. A. Deb and P. K. Banerjee, ‘A comparison between isoparametric Lagrangian elements in 2D boundary element 
method‘, Int. j .  numer methods eng. 28, 1539-1555 (1989). 

28. W. L. Wendland, ‘Asymptotic accuracy and convergence for point collocation methods’, in C. A. Brabbia (ed.), 
Boundary Element Research, Vol. 2, Springer, New York 1985, pp. 23e257. 

29, W. L. Wendland, ‘Mathematical properties and asymptotic error estimates fo r  elliptic boundary element methods’, 
in T. A. Cruse (ed.), Advanced Boundary Element Methods, Springer, New York 1987, pp. 475439. 

30. D. W. Kelley, R. J. Mills, J. A. Reizes and A. D. Miller, ‘A posteriori estimates of the solution caused by discretization 
in finite element, finite difference and boundary element methods’, Int. j .  numer. methods eng., 24, 1921-1939 (1987). 

31. C. Y. Chan, ‘Hydrodynamic interactions in large aspect ratio fiber suspensions, Ph.D. Thesis, University of Delaware, 
December 1991. 

32. A. H. Stroud and D. Secrest, Gaussian Quadrature Formula, Prentice-Hall, Englewood W s ,  NJ, 1966. 
33. C. Y. Chan, A. N. Beris and S. G. Advani, ‘Use of boundary element method to simulate hydrodynamic interactions 

around ellipsoids in 3-D flow fields’, Ann. Polymer Processing Society Meeting, H. H. Winter and M. F. Malone (eds), 
University of Massachusetts, Amherst, MA, 4D4E, August 1989. 

34. C. Y. Chan, A. N. Beris and S. G. Advani, ‘Simulation of 3-D hydrodynamic interactions around ellipsoidal particles 
using high order boundary element techniques’, in S. Grilli, C. A. Brebbia and A. H.-D. Cheng (eds), Proc. Fqth Int. 
Con$ on Boundary Element Technology, Springer, New York, 1990, pp. 231-252. 

T. A. Cruse (Ed.), Springer-Verlag, New York, 1987, pp. 41-47. 

temperature problems for a domain with a cut’, PMM (USSR), 49,482-489 (1985). 

flow problems’, Appl. Math. Modell. 14, 618429 (1990). 

(1991). 

1976, Chap. 4. 

Eng. A d ,  5, 198-204 (1985). 

35. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff, Dordrecht, 1970. 
36. S. Kim and R. T. M u a n ,  ‘The resistance and mobility functions of two equal spheres in low-Reynolds-number flow’, 

37. S. Kim, ‘Stokes flow past three spheres: an analytic solution’, Phys. Fluids, 30, 2309-2314 (1987). 
38. S. Kim, ‘Sedimentation of 2 arbitrarily oriented spheroids in a viscous fluid‘, Int. J .  Multiphase Flow, 5 ,  699-712 

39. A. J. Goldman, G. Cox and H. Brenner, ‘Low Reynolds number fluid-particle dynamics I. Motion of two spherical 

40. C. M. Bender and S .  A. Orszag, Adoanced Mathematical MethodsJor Scientists and Engineers, McGraw-Hill, New 

41. B. J. Yoon and S. Kim, ‘A boundary collocation method for the motion of two spheroids in Stokes flow: 

42. R. G. Cox, ‘The motion of suspended particles almost in contact’, Int. J. Multiphase Flow, 1, 34S371 (1974). 
43. S. Kim, personal communication to A.N.B. 13 May 1991. 

Phys. Fluids, 28, 2033-2045 (1985). 

(1985). 

particles in a direction perpendicular to their line of centers’, Chem. Eng. Sci., 21, 1151 (1966). 

York, 1978. 

hydrodynamic and colloidal interactions’, Int. J .  Multiphase Flow, 16, 639-649 (1990). 




